Flexible Multiple Semicoarsening for Three-Dimensional Singularly Perturbed Problems

نویسندگان

  • Takashi Washio
  • Cornelis W. Oosterlee
چکیده

We present robust parallel multigrid-based solvers for 3D scalar partial differential equations. The robustness is obtained by combining multiple semicoarsening strategies, matrixdependent transfer operators, and a Krylov subspace acceleration. The basis for the 3D preconditioner is a 2D method with multiple semicoarsened grids based on the MG-S method from [C. W. Oosterlee, Appl. Numer. Math., 19(1995), pp. 115–128] and [T. Washio and C. W. Oosterlee, GMD Arbeitspapier 949, GMD, St. Augustin, Germany, 1995]. The 2D method is generalized to three dimensions with a line smoother in the third dimension. The method based on semicoarsening has been parallelized with the grid partitioning technique [J. Linden, B. Steckel, and K. Stüben, Parallel Comput., 7(1988), pp. 461–475], [O. A. McBryan et al., Impact Comput. Sci. Engrg., 3(1991), pp. 1–75] and is evaluated as a solver and as a preconditioner on a MIMD machine. The robustness of the 3D method is shown for finite volume and finite difference discretizations of 3D anisotropic diffusion equations and convection-dominated convection-diffusion problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid method for singularly perturbed delay boundary value problems exhibiting a right boundary layer

The aim of this paper is to present a numerical method for singularly perturbed convection-diffusion problems with a delay. The method is a combination of the asymptotic expansion technique and the reproducing kernel method (RKM). First an asymptotic expansion for the solution of the given singularly perturbed delayed boundary value problem is constructed. Then the reduced regular delayed diffe...

متن کامل

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

An efficient numerical method for singularly perturbed second order ordinary differential equation

In this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer. A fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. Thomas algorithm is used to solve the tri-diagonal system. The stability of the algorithm is investigated. It ...

متن کامل

Numerical method for a system of second order singularly perturbed turning point problems

In this paper, a parameter uniform numerical method based on Shishkin mesh is suggested to solve a system of second order singularly perturbed differential equations with a turning point exhibiting boundary layers. It is assumed that both equations have a turning point at the same point. An appropriate piecewise uniform mesh is considered and a classical finite difference scheme is applied on t...

متن کامل

A Parameter Uniform Numerical Scheme for Singularly Perturbed Differential-difference Equations with Mixed Shifts

In this paper, we consider a second-order singularly perturbed differential-difference equations with mixed delay and advance parameters. At first, we approximate the model problem by an upwind finite difference scheme on a Shishkin mesh. We know that the upwind scheme is stable and its solution is oscillation free, but it gives lower order of accuracy. So, to increase the convergence, we propo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 19  شماره 

صفحات  -

تاریخ انتشار 1998